Discordance in drug resistance-associated mutation patterns in marker genes of Plasmodium falciparum and Plasmodium knowlesi during coinfections.
نویسندگان
چکیده
OBJECTIVES Human Plasmodium knowlesi infections have been reported from several South-East Asian countries, excluding India, but its drug susceptibility profile in mixed-infection cases remains unknown. METHODS The chloroquine resistance transporter (CRT) and dihydrofolate reductase (DHFR) genes of P. knowlesi and other Plasmodium species were sequenced from clinical isolates obtained from malaria patients living in the Andaman and Nicobar Islands, India. The merozoite surface protein-1 and 18S rRNA genes of P. knowlesi were also sequenced from these isolates. RESULTS Among 445 samples analysed, only 53 of them had P. knowlesi-specific gene sequences. While 3 of the 53 cases (5.66%) had P. knowlesi monoinfection, the rest were coinfected with Plasmodium falciparum (86.79%, n = 46) or Plasmodium vivax (7.55%, n = 4), but none with Plasmodium malariae or Plasmodium ovale. There was discordance in the drug resistance-associated mutations among the coinfecting Plasmodium species. This is because the P. knowlesi isolates contained wild-type sequences, while P. falciparum isolates had mutations in the CRT and DHFR marker genes associated with a higher level of chloroquine and antifolate drug resistance, respectively. The mutation pattern indicates that the same patient, having a mixed infection, may be harbouring the drug-susceptible P. knowlesi parasite and a highly drug-resistant P. falciparum parasite. CONCLUSIONS A larger human population in South-East Asia may be at risk of P. knowlesi infection than reported so far. The different drug susceptibility genotypes of P. knowlesi from its coinfecting Plasmodium species in mixed infections adds a new dimension to the malaria control programme, requiring formulation of an appropriate drug policy.
منابع مشابه
Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملClinical Pharmacology of the Antimalarial Artemisinin-Based Combination and other Artemisinins in Children
In 2010, there were estimated 219 million cases of malaria resulting in 666,000 deaths and two-thirds were children. Children are more vulnerable than adults to malaria parasites. In sub-Saharan African countries, maternal malaria is associated with up to 200,000 estimated infant deaths yearly. Malaria is caused by five Plasmodium parasites namely: Plasmodium falciparum, Plasmodium vivax, Plasm...
متن کاملTreatment of Malaria Parasitaemia in Infants and their Mothers
Malaria is an infection sustained by three parasites namely: Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale. Plasmodium falciparum is the most common and virulent parasite. These parasites are present in different areas of the sub-Saharan African countries and Asia. In 2010, there were an estimated 219 million cases of malaria resulting in 660,000 deaths and, approximately, two-t...
متن کاملAdaptation of the [H]Hypoxanthine Uptake Assay for In Vitro-Cultured Plasmodium knowlesi Malaria Parasites
The zoonotic malaria parasite Plasmodium knowlesi has recently been established in continuous in vitro culture. Here, the Plasmodium falciparum [H]hypoxanthine uptake assay was adapted for P. knowlesi and used to determine the sensitivity of this parasite to chloroquine, cycloguanil, and clindamycin. The data demonstrate that P. knowlesi is sensitive to all drugs, with 50% inhibitory concentrat...
متن کاملResistance of Melanesian elliptocytes (ovalocytes) to invasion by Plasmodium knowlesi and Plasmodium falciparum malaria parasites in vitro.
Erythrocytes from humans with Melanesian elliptocytosis are resistant to invasion by Plasmodium falciparum in vitro and epidemiological evidence suggests they may be resistant to P. vivax and P. malariae. We have examined the ability of P. knowlesi merozoites to invade Melanesian elliptocytes in vitro as a definitive means of examining these cells for resistance to invasion by malarial species ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of antimicrobial chemotherapy
دوره 68 5 شماره
صفحات -
تاریخ انتشار 2013